
Basic Designs and How We Got Them Wrong

Adam Furmanek



This talk may not 
change how you do 
things
BUT WILL EXPLAIN HOW TO MAKE THEM BETTER

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 2



About me

Software Engineer, Blogger, Book
Writer, Public Speaker.
Author of Applied Integer Linear
Programming and .NET Internals
Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 3

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam


Agenda
Liskov Substitution Principle.

Dependency Inversion (and async...).

Inheritance.

Exceptions.

Encapsulation.

Objects.

Pure functions.

Summary.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 4



Liskov Substitution 
Principle

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 5



Liskov Substitution Principle
Part of SOLID principles.

The principle comes from A Behavioral Notion of 
Subtyping paper from 1994.

It considers issues with covariance, contravariance, 
subtyping, contracts, invariants, and history.

„This paper takes the position that the relationship 
should ensure that any property proved about 
supertype objects also holds for its subtype 
objects”.

Many articles have been written, including the one 
from Robert C. Martin.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 6

https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf
https://web.archive.org/web/20151128004108/http:/www.objectmentor.com/resources/articles/lsp.pdf


Square and Rectangle
According to Wikipedia:

1) A typical example that violates LSP is a 
Square class that derives from a Rectangle
class, assuming getter and setter methods 
exist for both width and height.

2) The Square class always assumes that the 
width is equal with the height.

3) If a Square object is used in a context 
where a Rectangle is expected, unexpected 
behavior may occur because the dimensions 
of a Square cannot (or rather should not) be 
modified independently.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 7

https://en.wikipedia.org/w/index.php?title=Liskov_substitution_principle&oldid=794793800#A_typical_violation


Ratio-maintaining component
We implement a framework for UI applications (let’s call it WPF = Widely Popular Framework).

We have a top class called Component that can be put on the canvas.

Component has Width and Height.

Let’s say that we want to implement a component that maintains the image ratio. Let’s call it 
FixedImage.

Any decent framework would requre FixedImage inherit from (or implement) Component.

Does it break LSP?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 8



This Doesn’t Break LSP!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 9



Let’s see the paper
Subtype Requirement: Let 𝜙(𝑥) be a property provable 
about objects 𝑥 of type 𝑇.

The 𝜙(𝑦) should be 𝑡𝑟𝑢𝑒 for objects 𝑦 of type 𝑆 where 𝑆 is 
a subtype of 𝑇.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 10



Let’s see the paper
In other words: we have a property that can be proved for 
the objects of the base type.

We should ensure that we can prove that property for the 
objects of the subtype.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 11



Easy!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 12

My 𝜙 is:

The compiled 
code of the 
method Foo is 
as in the 
bottom 
snippet.



And completely weird!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 13

My 𝜙 is: the compiled code of the method Foo is as in the bottom 
snippet.

This must be true for every subtype of BaseType.

Effectively, we can’t change the method implementation.



LSP is about the explicit
contract.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 14



Contract
According to Wikipedia:

It [Design by contract] prescribes that software designers should 
define formal, precise and verifiable interface specifications 
for software components, which extend the ordinary definition of
abstract data types with preconditions, postconditions and
invariants. These specifications are referred to as "contracts", in 
accordance with a conceptual metaphor with the conditions and 
obligations of business contracts.

First coined by Bertrand Meyer in 1986 (8 years before LSP).

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 15



Square and Rectangle revisited
According to Wikipedia:

1) A typical example that violates LSP is a 
Square class that derives from a Rectangle
class, assuming getter and setter methods 
exist for both width and height.

2) The Square class always assumes that the 
width is equal with the height.

3) If a Square object is used in a context where
a Rectangle is expected, unexpected behavior 
may occur because the dimensions of a Square
cannot (or rather should not) be modified 
independently.

The problem is: there is no contract specifying 
that we can’t change one side without 
changing the other.

We tend to assume such a contract because of 
what we learned at school.

However, contracts must be explicit.

How to fix it? Explicitly state that it must be 
possible to change side lengths independently.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 16

https://en.wikipedia.org/w/index.php?title=Liskov_substitution_principle&oldid=794793800#A_typical_violation


Contracts
Must be explicit.

Must be precise, formal, 
and verifiable.

The authors of the contract may 
not be able to verify them on 
their own.

The contract may be specified 
outside of the source code:
◦ Documentation

◦ Wikis

◦ Diagrams

◦ Organization’s patterns

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 17



Mocks based on contracts
We need to mock production components
(for whatever reason).

Mocks do not represent the actual
components – whitebox and London
(Mockist) TDD.

Don’t use mocks if possible
◦ Follow Detroit TDD

◦ Run production code as much as possible

◦ Design by contract

Any non-production component, no matter
how smart, is a mock.

Solution – Liskov Substitution Principle.

It’s not (only) about the inheritance.

It’s about the contract
◦ Preconditions

◦ Invariants

◦ Postconditions

◦ History principle

Contracts cannot be verified by the callee!
Only the caller can verify them.

Contracts don’t need to be written down in
the code.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 18



21.10.2024 BASIC DESIGNS - ADAM FURMANEK 19

It’s easy to break contract with mocks



21.10.2024 BASIC DESIGNS - ADAM FURMANEK 20

It’s easy to break contract with mocks



21.10.2024 BASIC DESIGNS - ADAM FURMANEK 21

It’s easy to break contract with mocks



21.10.2024 BASIC DESIGNS - ADAM FURMANEK 22

It’s easy to break contract with mocks



21.10.2024 BASIC DESIGNS - ADAM FURMANEK 23

It’s easy to break contract with mocks



You can put anything in the contract
Interesting case of Collection.add in Java

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 24



Immutable vs readonly
What happens when we accept „immutable” collection as a function parameter

◦ Do we say that „we won’t modify the collection”?

◦ Or do we say that „this collection can’t be modified ever”?

While we can encode the first in the type system, we can’t encode the second.

Encoding the first is like saying „I need to show that I can’t do something”.

Encoding the second is like saying „I need to show that nobody can do something”. We can’t do 
that in general.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 25



Mutable and immutable collections 
(Java)

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 26



Mutable and immutable collections 
(Kotlin)

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 27



Mutable and immutable collections 
(Scala)

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 28



Dependency Inversion
HOW DO YOU REPLACE A STRING?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 29



String improvements in Java
Internal structure:

◦ Originally String was implemented using char array under the hood.

◦ Java 9 changed it to byte array to allocate 1 byte if string has no unicode characters.

Concatenation performance:
◦ Before Java 9 concatenations were translated to StringBuilder.append.

◦ Starting in Java 9 they are translated to invokedynamic and reuse multiple strategies.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 30



String at Facebook – 1% performance win
CppCon 2016: Nicholas Ormrod “The strange details of std::string at Facebook"

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 31



Objects in V8
Object is a dictionary — use hash map.

Use maps to optimize access by offset.

Reserve more memory than needed to have
room for new properties.

Property names are strings but for arrays we 
can use… well, arrays.

V8 switches implementation depending on the 
usage.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 32



How do you replace a string?
You cannot!

String is:
◦ A class – not an interface

◦ A sealed class – no inheritance

◦ Exposed on IL level via string literals

◦ Highly coupled with managed and unmanaged code (native part relies on memory structure)

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 33



This applies to many more things!
Built in things that we might want to override:

◦ DateTime.Now

◦ All the things for static configuration

◦ Environment.Exit

There are even libraries for doing this magic:
◦ Moles

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 34



Colorful functions
Green Red

Green

Red

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 35



Colorful functions

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 36

void Foo() async Task Foo()

void Foo()

async Task Foo()

Green Red

Green

Red



Colorful functions

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 37

void Foo() async Task Foo()

void Foo()

async Task Foo()

Green Red

Green

Red

void Foo() async ValueTask Foo() async Task Foo()

void Foo()

async ValueTask Foo()

async Task Foo()



DRY
ASYNC COROUTINES

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 38



Do not repeat yourself (DRY)

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 39



Inheritance

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 40



Single inheritance
Typically, we can inherit from one base class only. We can 
implement multiple interfaces, though.

Sometimes we can’t inerit at all – structs in C#.

There is no multiple inheritance in C# nor Java.

Or is there?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 41



Multiple inheritance
A feature of OOP in which a class can inherit from multiple classes.

Some languages (most notably C++) support that.

C# (and others) doesn’t support that because Java decided not to.

Java doesn’t support the multiple inheritance due to diamond 
problem.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 42



Diamond problem
Situation when two subclasses B and C inherit from the same base class A, 
and then class D inherits from both B and C.

The problem arises when we want to use something from the class D that 
comes from the class A. We have two copies of the element from the base 
class and we don’t know which one to use.

In other words: the diamond problem is when we have two „similar” things 
and there is no „best answer” which one to use.

Is this a problem at all?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 43



We’ve solved the 
diamond problem many 
times already!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 44



Diamond problem and interfaces
We have two „independent” 
methods with the same 
signature.

Is this a problem?

In this case, there is no 
problem at all. We have two 
identical signatures and just 
one implementation.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 45



Diamond problem and arrays 
We have two methods with different input 
parameters.

We call the method passing values that match both 
of the methods.

Is this a problem?

C# compiler prefers the method with no casting 
needed and calls „Two integers”.

This can break compatibility.

This is the diamond problem in disguise.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 46



Diamond problem and type priority
We have two methods with different input 
parameters.

We call the method passing a value that needs to 
be casted to one of the types.

Is this a problem?

C# compiler prefers to cast integers to long values, 
so the first method is picked.

This can break compatibility.

This is the diamond problem in disguise.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 47



Diamond problem and interfaces part 2
We have two methods with 
different return type.

Is this a problem?

The diamond problem is not 
solved because C# doesn’t 
support covariant methods 
here.

This works in Java because 
they use bridge methods.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 48



Default interface implementation
Multiple inheritance?
We have two interfaces with the same method 
signature.

Both interfaces provide the default implementation.

We create a class that inherits from both interfaces.

What happens in c.Foo()?

Is this a problem?

The code doesn’t compile because we don’t know 
which Foo to use. We need to cast c to either A or B.

Scala would call A.Foo().

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 49



Diamond problem
Many ways to solve the problem of „what is the best pick”:
◦ Nobody picks – simply ban muliple class inheritance

◦ There is just one pick - virtual inheritance in C++ or same signature example

◦ We pick arbitrarily – cast integer to long or prefer the method with better 
match

◦ We let the user pick – throw an error and ask for a code fix

Diamond problem has been solved in many places and all solutions 
have been used.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 50



Types of inheritance
Signature inheritance

Implementation inheritance

State inheritance

Identity inheritance

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 51



Signature inheritance
We „inherit” the interface which is a set of signatures.

Signature depends on the programming language
◦ C# - name + parameter types

◦ Intermediate Language – name + parameter types + return type

◦ C++ - name + parameters types + return type + calling convention

There is one case in C# where signature includes the returned type – cast operators.

C# and Java support multiple signature inheritance thanks to interfaces.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 52



Implementation inheritance
We „inherit” the implementation which is basically a method body.

Typically implemented by traits, mixins, or „multiple inheritance”.

C# and Java support multiple implementation inheritance thanks to default interface 
implementation.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 53



State inheritance
We „inherit” the state which is basically fields.

Can be implemented with traits, mixins, or „multiple inheritance”.

C# and Java support single state inheritance thanks to „regular inheritance”.

C# and Java don’t support multiple state inheritance. It can be implemented with 
implementation inheritance (so default interface implementation again).

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 54



Identity inheritance
We „inherit” the identity which is basically a constructor.

C# and Java support single identity inheritance (that’s the „regular inheritance”).

C# anda Java don’t support multiple identity inheritance. This can be implemented in a hacky 
way with memory manipulation.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 55



Multiple Inheritance

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 56



Exceptions

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 57



Exceptions – what’s the output?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 58

Which exception 
gets printed?

Side note: what 
happens if there 
is no catch in 
this snippet?



Exceptions
C# will lose the first exception.

Python 2 will lose the first exception.

Python 3 will store the first exception as a property on the second one.

Java may lose or keep, depending on the exception type.

Why would we care?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 59



Resource management

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 60

What happens if we get 
exceptions in highlighted 
places?

What’s worse, this code has a 
race condition.



Fixing using

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 61



Rethrowing exceptions
throw e may lose the call stack or work well.

Special instructions like throw may break the 
call stack (this happens in C#).

Creating new exception and throwing may 
break the exception semantics.

async may lose the state machine.

ExceptionDispatchInfo.Capture(e).Throw(); is 
the solution in C#.

Generally – rethrowing exceptions is hard!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 62



Finally
finally is supposed to be executed „no matter what”, however

◦ It may not be executed when application dies

◦ May be skipped when application exits

◦ May be ignored depending on the exception type

◦ May be skipped on unhandled exceptions

finally may swallow exceptions!

Never return in finally! It breaks the two-pass exception system.

Filtering exceptions is prone to the same issue. It’s better to filter outside of catch where 
possible (use exception filters).

Remember that finallies are prone to race conditions.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 63



Encapsulation

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 64



Encapsulation
Typically, one of the two mechanisms:

◦ A language mechanism for restricting direct access to some of the object's components (sometimes 
called Information Hiding).

◦ A language construct that facilitates the bundling of data with the methods (or other functions) 
operating on those data.

Grady Booch defined it as „the process of compartmentalizing the elements of an abstraction 
that constitute its structure and behavior; encapsulation serves to separate the contractual 
interface of an abstraction and its implementation.”

C# defines it as „hiding the internal state and functionality of an object and only allowing access 
through a public set of functions.”

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 65



Implementation
With access modifiers:

◦ Private, public, protected, internal, package, ...

◦ Typically, private is for the instances of the type, not only the same instance!

◦ Scala has private[this] that is „really” private.

With naming conventions:
◦ Private members start with _underscore

◦ Effectively, everything is public

With lexical closure:
◦ We use nested lambdas that capture local variables within the closure

◦ „The best” method to really hide variables as it’s hard to find them even with reflection

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 66



Problem with encapsulation
Testing:

◦ We can’t access „private” state from the tests

◦ We need to make it available by making „friends” – friend in C++, InternalsVisibleTo in C#, reusing 
package name in Java

Serialization:
◦ We need to access private state to create objects

◦ Sometimes we even need to create objects without calling their constructors

Performance:
◦ Reading state via methods is slower

◦ We may need to get pointers to read the memory directly

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 67



Encapsulation is not a 
mechanism for security!
IT ’S JUST A BUNCH OF BYTES ANYWAY

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 68



Workarounds
Reflection

Debugging

Memory dumps

IL-level assembly modifications

Pointers

Method hijacking (via pointers or descriptors)

Custom class loaders

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 69



Encapsulation helps us 
avoid errors!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 70



View of the data
View is created to display the specific information that a user needs and to hide the portions 
that shouldn’t be accessed.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 71



Benefits
There is no case of „accessing hidden field” because the field is simply not in the contract.

We can have many views of the same entity for different purposes (slightly tricky in C# or Java, 
though).

Most importantly: we simply cast the interface to a more concrete view to access everything.

We have a full compiler support!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 72



Objects

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 73



Instance methods of objects
Type identity – GetType(), getClass()

Cloning – MemberwiseClone(), clone()

Cleanups – Finalize()

Representation – ToString()

Access control – wait(), notify()

Equality – Equals()

Hashing – GetHashCode()

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 74



Type identity
Typically, implemented as an internal runtime method. The implementation is not in your 
programming language.

For reference types, it simply gets the pointer to the type tag. For value types, the value is boxed 
first (and the compiler inserts the type).

Should it be a method or a property? Think about GetType() in C#.

Should it be virtual? Is it virtual?

Why is it an instance method?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 75



Cloning
Typically implemented as protected method. Typically part of the platform (or uses low-level 
constructs).

May require some mix-in or marker interface. May require some crazy implementation. For instance, 
Java requires the type to:

◦ Implement empty interface Cloneable
◦ Override the method to be public
◦ Call super.clone() only

Performs shallow copy.

Should it be public?

Should it be on the object at all?

Many consider the implementation wrong. Josh Bloch says „The Cloneable interface was intended as a 
mixin interface for objects to advertise that they permit cloning. Unfortunately it fails to serve this 
purpose...”.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 76



Cleanups
Typically protected and empty. Is supposed to release resources owned by the object.

It is allowed to bring the object back to life! The object may be registered again for cleaning up 
in the future in some platforms.

Typically, any thread may call this method. There is no guarantee which one will do that.

Throwing the exception may break the platform!

Related to other cleanup-interfaces (AutoCloseable, IDisposable). However, there is typically no 
requirement to release the resources early!

You should behave like the GC is never called!
◦ First, we may have plenty of memory.

◦ Second, finalize may be time-limited when exiting.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 77



Representation
Default implementation typically returns the name of the type.

Subclasses should override the method. Typical implementation uses hashcode or something 
similar.

Unfortunately, there is no single „textual representation” of an object. Think of 
DebuggerDisplayAttribute.

Best practice is not to rely on the textual form returned by the implementation.

Why do we have the method then?

Some platforms don’t have the method built into the object and require some marker type.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 78



Access control
Used for synchronizing threads accessing the same object.

Very low-level mechanism that should be avoided today. Use high-level constructs instead.

Usage must follow specific protocol to avoid spurious wake-ups or lost notifications.

Do not use! Unless you really know what you’re doing!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 79



Equality
Indicates whether two instances are equal based on...

◦ Memory location?

◦ Identifier?

◦ Fields?

Two objects of different classes (even if they inherit from each other) cannot be equal!

Two objects can be equal depending on the context:
◦ Should cloned objects be equal? Should they have the same identifiers?

◦ Can we ignore units, denominators, non-observable internal state?

◦ Can we cast between types?

◦ Is there a single definition of „equality”?

Should this be on the object?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 80



Hashing
Supported for the benefit of the hash tables in the language.

We would like to be able to put all our objects in dictionaries. However, we can’t do that without 
„generic hashing solution”. But should it be in the object implementation?

This affects the memory layout of the object. Should it be exposed as a field?

This affects how GC works.

May have different performance characteristic depending on the history of an object!

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 81



Purity and Immutability

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 82



Pure function
Function that has the following properties:
◦ Return values are identical for identical arguments

◦ Specifically, there is no variation with local static variables, non-local variables, mutable reference 
arguments, input streams, referential transparency, etc.

◦ Function has no side effects

Side effect is when we modify some state variable outside of the 
local environment.

Local environment is basically a function call frame.

Pure functions are „obviously better”?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 83



bool double.TryParse(string, out double)
This function is not pure
◦ It mutates the input parameter by writing to the second argument

◦ It uses the global state to check the decimal separator

Is this function bad in any way?

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 84



Better TryParse

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 85



Why pure functions
Easy to test.

Easy to optimize by the compiler.

Support referential transparency.

Can be easily memoized.

Can be easily analyzed.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 86



Each function is „pure”!
„Pure” functions take input parameters 𝐼 and produce output 𝑂

◦ 𝐼 is the set of input arguments

◦ 𝑂 is the return value (output)

„Impure” functions take input parameters (𝐼, 𝑆) and produce output 𝑂
◦ 𝐼 is the set of input arguments

◦ 𝑆 is the external state (global variables, static variables, etc.)

◦ 𝑂 is the return value (output) + the new state

Technically, „pure” functions take the same parameters but the state is empty: (𝐼, ∅).

There is no difference between these two types of functions on the technical level. The only 
difference is in reasoning.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 87



Reasoning
We can reason about 𝐼 much easier than about 𝑆.

To prove something about 𝐼 we just need to trace back how 𝐼 was prepared (analyze the call 
site).

To prove something about 𝑆 we need to analyze how 𝑆 was prepared (the call site) and how it 
could have been affected „in the meantime”.

Effectively, with 𝐼 we just prove what happened, whereas with 𝑆 we need to show what „didn’t 
happen” as well.

This is not a problem at all when both 𝑰 and 𝑺 are small.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 88



It’s not about purity or 
impurity.
It’s about reasoning.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 89



Digression
Technically, each function takes 𝐼, 𝑆, 𝐸 and produce 𝑂

◦ 𝐼 is the set of input arguments

◦ 𝑆 is the external state

◦ 𝐸 is the execution environment that the function uses indirectly (or implicitly)

◦ 𝑂 is the return value + the new state + the new environment

Environment is basically anything – memory layout of our process, memory used by the 
operating system, type of the CPU, electrical interference, cosmic rays, etc.

While we can control 𝑆 (since the function uses it directly), we can’t control 𝐸.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 90



Digression 2
Sometimes „impure” functions are „much worse” because we can’t use them at all.

For instance, constexpr in C++ requires pure functions, or generally things calculated in the 
compilation time.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 91



Summary
Basic building blocks are often inefficient.

Remember about the contracts.

Beware of async.

Do not repeat yourself.

Always have try + catch.

Manage resources carefully.

Question all decisions as they are often made arbitrarily.

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 92



Q&A

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 93



References
https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf - A Behavioral Notion of Subtyping

https://web.archive.org/web/20151128004108/http:/www.objectmentor.com/resources/articles/lsp.
pdf - The Liskov Substitution Principle

https://blog.adamfurmanek.pl/2021/02/06/types-and-programming-languages-part-4 - Diamond 
Problem

https://blog.adamfurmanek.pl/2021/07/17/types-and-programming-languages-part-6/ - LSP

https://blog.adamfurmanek.pl/2022/07/23/types-and-programming-languages-part-16/ -
Encapsulation

https://blog.adamfurmanek.pl/2022/07/30/types-and-programming-languages-part-17/ - LSP in 
practice

https://blog.adamfurmanek.pl/2021/01/23/types-and-programming-languages-part-3/ - Exception 
handling

https://blog.adamfurmanek.pl/2020/07/25/net-inside-out-part-21/ - Using is broken

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 94

https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf
https://web.archive.org/web/20151128004108/http:/www.objectmentor.com/resources/articles/lsp.pdf
https://blog.adamfurmanek.pl/2021/02/06/types-and-programming-languages-part-4
https://blog.adamfurmanek.pl/2021/07/17/types-and-programming-languages-part-6/
https://blog.adamfurmanek.pl/2022/07/23/types-and-programming-languages-part-16/
https://blog.adamfurmanek.pl/2022/07/30/types-and-programming-languages-part-17/
https://blog.adamfurmanek.pl/2021/01/23/types-and-programming-languages-part-3/
https://blog.adamfurmanek.pl/2020/07/25/net-inside-out-part-21/




Thanks!
CONTACT@ADAMFURMANEK.PL

HT TP://BLOG.ADAMFURMANEK.PL

FURMANEKADAM

21.10.2024 BASIC DESIGNS - ADAM FURMANEK 96

http://blog.adamfurmanek.pl/
https://twitter.com/furmanekadam

