
NEXT

C#
Manual Of Style

Dino Esposito
CTO Crionet Sports
dino.esposito@crionet.com

NEXT

Some common-sense

Lots of personal idiosyncrasies
(of a software person since 1992)

Coding Practices

Style SOLID Techniques

Backed by

Some knowledge and pragmatism

NEXT

Style
Writing Comments Naming

DISCLAIMER
Everything is highly subjective. But someone has to say it.
(And better if it’s an old-school guy ☺)

NEXT

Writing Rules

▪ Accept suggestions from code assistant tools (i.e., R#)

▪ One statement and declaration per line
• Preferably render long LINQ statements fluently

▪ Add one blank line space between (related groups of) methods

▪ Be standard with indentation (tabs) and nesting

▪ XML comments to describe at least public elements of a class

▪ Be careful/wise with #regions (but don’t exclude their use)

NEXT

Comments

▪ Open your heart ☺
• Software is full of silly things done for largely acceptable reasons

• Make sure you explain weird choices and last-minute changes

• If the code does things not completely intelligible, report your thoughts at the moment

▪ Expect readers with some domain context
• But not too much (depending on members of the team and turnover)

• Newbies are not the target of comments

• Should you describe processes?

▪ Be precise and concise (regardless)

NEXT

Naming

▪ C# is PascalCase
• Acronyms upper case unless followed by text: WO(), PrintWO(), PrintWoList()

▪ English only

▪ Ubiquitous Language rules from DDD

▪ Get a convention and be consistent
• Force team members to do the same

(NOTE: this could just be me)

NEXT

Even minor things count
Painful if not done consistently across the repo and commits

NEXT

NEXT

SOLID
Writing Comments Naming

NEXT

SOLID at a (pragmatic) glance

SRP
Do just one thing—the boundary of which is up to you and your expertise/sensitivity

OCP
Think the class to be extensible, via generics or behavior providers (Strategy pattern)

LSP
Use inheritance widely? Then, every derived class should be usable wherever base class is accepted

ISP
Use a lot of abstractions? Then, no client should be forced to implement an interface it doesn’t use

DIP
Code to an interface rather than to an implementation

NEXT

SOLID at a (even more pragmatic) glance

▪ Remember the mantra “Every class as a service”?
• A provocative statement…

NEXT

SOLID Like Personal Hygiene

▪ Health/Technical Debt analogy
• Personal hygiene prevents health issues, while SOLID prevents code rot and technical debt

▪ Both require regular, disciplined practices
• Consistent application over time to maintain good habits

▪ Neglect leads to long-term problems
• Poor hygiene causes infections; poor SOLID leads to fragile and unmanageable codebases

▪ Not always immediately obvious
• Effects of good hygiene and clean code aren't always instantly visible, but their benefits

accumulate over time

NEXT

C# TECHNIQUES
Partial Classes Extensions Sugar

NEXT

1
PARTIAL
CLASSES

Single class definition but split across multiple files

Different aspects of a class, such as data members, methods, or event handlers,
can be placed in separate files, making it easier to manage and maintain code.

Multiple developers can work on different parts of a class simultaneously without
conflicting with each other, promoting parallel development.

Enhance code readability by allowing developers to focus on specific sections of a
class at a time, making it easier to understand and navigate the codebase.

Partial methods: definition in one file, implementation in another

NEXT

2
MORE

COMPACT
CODE

Early Return IF pollution

❑ Invert the Boolean condition
❑ Use switch construct
❑ Merge multiple IF statements

Pattern Matching

if (doc != null &&

doc.YearOfRelease >= 2015 &&

doc.YearOfRelease < 2023 &&

doc.YearOfRelease != 2020)

{

// Do some work

}

if (doc is

{ YearOfRelease: >= 2015 and

< 2023 and

not 2020 })

{

// Do some work

}

Preconditions here

NEXT

3
METHODS

OVER PROPERTIES

user.PasswordResetToken = Guid.NewGuid();

user.PasswordResetRequested = DateTime.UtcNow;

user.RequestPasswordReset();

The method includes just the two lines above that set properties. You simply
shifted from a data-centric vision to a behavior-centric perspective.

Where is readability? In the name of the action.

Where is maintainability? You can possibly change the way password
reset is implemented by just rewriting the method.

NEXT

4
MAGIC CONSTANTS

NEXT

5
EXTENSION
METHODS

Make the code more convenient and readable

New methods on existing types to extend the functionality without
having to inherit or create wrapper classes.

NEXT

Extension Methods Extensions in C# 14

▪ An extension type builds on an underlying type
• Normal C# types, yours or from external libraries
• Might want use an extension if you can’t change the code of the underlying type

▪ Syntactic sugar
• Implemented as static methods that receive an instance as a parameter
• Compiler accepts a “magic” syntax that make it look like a true method of the type

▪ Two kinds of extension types: implicit and explicit extensions
• Implicit apply to all occurrences of the underlying type (same as today)
• Explicit apply only to instances of the underlying type converted to the extension type
• Explicit extension types may include methods and properties

NEXT

public implicit extension PersonExtension for Person
{

// Extension property
public int Age => DateTime.UtcNow.Year - Birth.Year;

}

public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime Birth { get; set; }

}

NEXT

public explicit extension PersonExtension for Person
{

// Extension property
public int Age => DateTime.UtcNow.Year - Birth.Year;

}

public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime Birth { get; set; }

}

Explicit extensions let you give extra features to specific instances of a type

// Usage
var person = new Person() { .// };
PersonExtension special = person; // Age only available to person
Console.WriteLine(special.Age);

NEXT

It’s all (or most) about readability

NEXT

What do I do for a living?

Ensure daily operations across a few sport governing bodies

Ensure proper data/stats worldwide distribution

Ensure 24x7 proper betting

NEXT

Coding for Simplicity
Focus on actual facts rather than catching up with all

new language features and engineering practices

simple code
as written by a good,

seasoned developer

is different from

simple code
as written by a junior,

young developer

0
2
4
6
8

10
12
14
16

1

2

3

4

5

6

7

An interactive system can never be fully specified nor can it
ever be fully tested.

Wegner’s Lemma

The user of the software won’t know what she wants until
she sees the software.

Humphrey’s Law

NEXT

https://github.com/youbiquitous/project-renoir/

One proven way of doing things is more than enough

	Slide 1: C# Manual Of Style
	Slide 2
	Slide 3: Style
	Slide 4: Writing Rules
	Slide 5: Comments
	Slide 6: Naming
	Slide 7: Even minor things count
	Slide 8
	Slide 9: SOLID
	Slide 10: SOLID at a (pragmatic) glance
	Slide 11: SOLID at a (even more pragmatic) glance
	Slide 12: SOLID Like Personal Hygiene
	Slide 13: C# TECHNIQUES
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Extension Methods Extensions in C# 14
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

