
Modernization
Without the Pain:
The .NET Guide to
Azure Container Apps

Hi! I’m Jiachen.
I work as a Product Manager, with a
focus on .NET in Azure Container Apps.

What does

offer .NET developers?

Azure Container Apps

Azure Container Apps

offers a
about Kubernetes.

different way to think

Distributed Applications 101

What are the benefits of
distributed applications?

High level of independent scalability
Solve bottlenecks by scaling up specific microservices
instead of the entire application.

Zero down-time deployments
Add new features, patch vulnerabilities, and make changes
to individual microservices without affecting the overall
application.

Fault isolation and resiliency
The application can continue running even when one
microservice goes down.

Distributed applications are
not always the right option.
In three minutes, I will show you why.

Microservices

YouTube

High upfront investment and much
to learn.

You might spend a lot of money, time, and
energy learning about something that might
not actually be a good fit.

What are the cons of distributed applications?

How does

make Kubernetes more accessible?

Azure Container Apps

 Deploy a cluster - like the central
nervous system - of nodes

 Nodes host pods, which contain
containers and what they need to
run

 Specifically, containers require
a Kubelet and container
runtime, with optional Kube-
proxy.

.NET Aspire

One Solution -> One Environment, One App -> One Container App

What are the cons of distributed applications?

More complexity; requires
optimization to avoid bloat.
Multiple services means more
communication, coordination, and
integration testing.

High upfront investment and much
to learn.

You might spend a lot of money, time, and
energy learning about something that might
not actually be a good fit.

How do you optimize your

distributed applications with

 + ?
.NET Aspire Azure Container Apps

Demo - Optimize your
microservices
 Use the Aspire dashboard to identify

inefficiencies
 Add a Redis cache store to simplify

communication across services.

Before
 Receive the request in the web app

microservice
 Call the authentication microservice to check

the users' identity if they're logged in
 Call the shopping basket microservice to find

out what items and what quantities are in the
basket

 Call the product catalog microservice to
obtain full details of each product

 Call the images microservice to obtain image
blobs for each product

 Call the stock taking microservice to check
stock levels

 Call the shipping microservice to calculate
shipping costs for the user's location and
preferences.

After
 Receive the request in the web app

microservice
 Retrieve data from Redis cache stor
 ??
 Profit! (or at least, the shopping cart is

populated)

Needs to be implemented carefully to
avoid the “distributed monolith.”

If your architecture is not designed well, you
can get the negatives of both monolithic and
distributed architectures.

What are the cons of distributed applications?

High upfront investment and much
to learn.

You might spend a lot of money, time, and
energy learning about something that might
not actually be a good fit.

What is a distributed monolith?

How to prevent a distributed monolith

Start simple.

Refactor to
microservices
incrementally,
only when
needed.

Resources in Azure Container Apps

Apps
Runs continuously and restarts
automatically upon exit of process.

Ex. HTTP APIs, web apps, and
background services

Jobs
Runs for a set time and exits; each
one represents a separate unit of
work.

Ex. Batch processes (on-demand
and scheduled)

Sessions
Secure sandbox environments for
running code that require isolation

 Ex. Running AI generated code or
commands submitted by users

What can lead to a distributed monolith?

Ensure you are
decomposing
your application
effectively.

What can lead to a distributed monolith?

Loosely couple
components.

Approaches for building quality distributed apps

Blue-Green

Have two identical environments -
one “blue” (staging) and the other
“green” (production.) Easy rollback
and traffic is switched over instantly.
Multiple versions of an app never
get run in parallel - good for legacy
apps.

Results in quality assurance and
minimizes risk/downtime when
updating your app.

However, requires twice the
computational resources and can be
technically challenging.

Canary

Release updates incrementally to a
subset of users. Lowest risk and
computationally cheaper than blue-
green deployment.

Results in early feedback from
users and detection of
performance/latency issues before
full release.

However, requires smart traffic
switching method instead of just a
load balancer and can be
technically challenging.

Rolling

Default deployment strategy in
Kubernetes. Incrementally replace
pod instances with a new version.
based on the server instance.

Results in minimal downtime as
current versions stay live.

However, can result in high latency
and rolling back is often difficult.

How do you test the
performance and latency of
your app using

?
Azure Container Apps

Approaches for building quality distributed apps

Blue-Green

Have two identical environments -
one “blue” (staging) and the other
“green” (production.) Easy rollback
and traffic is switched over instantly.
Multiple versions of an app never
get run in parallel - good for legacy
apps.

Results in quality assurance and
minimizes risk/downtime when
updating your app.

However, requires twice the
computational resources and can be
technically challenging.

Canary

Release updates incrementally to a
subset of users. Lowest risk and
computationally cheaper than blue-
green deployment.

Results in early feedback from
users and detection of
performance/latency issues before
full release.

However, requires smart traffic
switching method instead of just a
load balancer and can be
technically challenging.

Rolling

Default deployment strategy in
Kubernetes. Incrementally replace
pod instances with a new version.
based on the server instance.

Results in minimal downtime as
current versions stay live.

However, can result in high latency
and rolling back is often difficult.

Work with one version of
the app (single revision

mode) or multiple

Customize unique
identifier for the

revision

Multi-revision mode

How much traffic gets
directed to each revision -
in this case, 100% to blue

Creates URL that can point
to different revisions

How do you host non-Aspire
.NET projects on

?
Azure Container Apps

Step 1: Containerize your code
(Dockerfile)
Write a Dockerfile or generate one using Visual
Studio or VS Code.

Step 1: Containerize your code
(no Dockerfile)
You can also containerize without a Dockerfile by
using dotnet publish command or deploying to
Container Apps directly from Visual Studio or VS
Code.

https://aka.ms/dotnet-containerize-without-dockerfile

https://aka.ms/dotnet-containerize-without-dockerfile

Step 2: Deploy your app
You can either deploy to Azure Container
Apps from a container image or the source
code.

We recommend starting with a Dockerfile
and/or a containerized application for more
customization and easier debugging.

Deployment with existing image

Deployment with no Dockerfile (Buildpacks)

Step 3: Test your app with
multiple revisions
Using multi-revision mode allows you to
implement deployment strategies and
evaluate the performance/latency of your
services before full roll-out.

Note: .NET Aspire currently does not support
multi-revision mode - it should be
implemented from the Container Apps side.

What is not a great fit for Azure Container Apps?

Traditional apps with simple
infrastructure needs

Container Apps simplifies the
infrastructure of complex, cloud-
native workloads in ways that some
apps do not need.

If you do not need much control over
the underlying infrastructure, Azure
App Service is the better fit.

Simple, single-container apps
that do not need to scale or
load balance

Container Apps supports a lot
around containers, but may not be
necessary if you need very little.

If you are sticking to a single
container and don’t need certificates
or scaling, Azure Container
Instances is a good option.

Complex, custom
microservices that require
access to the control plane API

Container Apps does not allow you to
query and manipulate API objects (i.e.
Pods, Namespaces, Events.) This can
lead to some challenges in debugging.

If you need granular control, Azure
Kubernetes Service is the better fit.

Takeaways

Usability > New and shiny
The goal is not to reinvent the wheel, but to build on existing
functionality in order to make it more usable.

Test and validate the architecture
of your distributed application.
Incorrect division of services and tight coupling can lead to
apps that have the worst of both monoliths and
microservices.

.NET on Container Apps is more than
just Aspire!
The platform offers a lot for .NET developers, whether they
are using Aspire or vanilla .NET.

Thank you!
You can reach out to me at
 @jiachenjiang_ (Twitter/X
 jiachen.jiang@microsoft.com (E-mail)

